Bài 2. Vận tốc

NL

Một người đi xe đạp trên đoạn đường AB. Nửa đoạn đường đầu người ấy đi với vận tốc v1=20km/h. Trong nửa thời gian còn lại người đó đi với vận tốc v2=10km/h,nửa cuối cùng đi với vận tốc v3=5km/h. Tính vận tốc trung bình trên cả đoạn đường AB.

TN
17 tháng 6 2017 lúc 16:51

Gọi s là chiều dài đoạn đường AB

Thời gian đi nửa đoạn đường đầu tiên là

\(t_1=\dfrac{\dfrac{s}{2}}{v_1}=\dfrac{s}{2v_1}\)

Với \(v_1=20\) km/h

Gọi \(t_2\) là thời gian đi nửa đoạn đường còn lại, thì theo đề bài trong khoảng thời gian \(\dfrac{t_2}{2}\)

Người đó đi với vận tốc

\(v_2=10\) km/h;

Do đó đoạn đường đi được trong thời gian này là:

\(v_2.\dfrac{t_2}{2}\)

. Và cuối cùng trong thời gian \(\dfrac{t_2}{2}\)

Còn lại người đó dắt bộ với vận tốc

\(v_3=5\) km/h;

Do đó đoạn đường đi được trong thời gian này là

\(v_3.\dfrac{t_2}{2}\)

Như vậy ta có:

\(\dfrac{S}{2}=v_2.\dfrac{t_2}{2}+v_3.\dfrac{t_2}{2}\)

\(\Rightarrow t_2=\dfrac{S}{v_2+v_3}\). Thời gian đi hết toàn bộ quãng đường AB là:

\(t=t_1+t_2=\dfrac{S}{2v_1}+\dfrac{S}{v_2+v_3}=S\left(\dfrac{1}{2v_1}+\dfrac{1}{v_2+v_3}\right)\)

Từ đó, vận tốc trung bình trên cả đoạn đường AB là:

\(v=\dfrac{s}{t}=\dfrac{1}{\dfrac{1}{2v_1}+\dfrac{1}{v_2+v_3}}\)

Thay số ta được

\(v=\dfrac{40.15}{40+25}\approx10,9\) km/h

Bình luận (1)

Các câu hỏi tương tự
MT
Xem chi tiết
KN
Xem chi tiết
CC
Xem chi tiết
WO
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
PT
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết