Chương 3: VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

TN

Một đường thẳng \(\left(\Delta\right)\) không qua trọng tâm G của tam giác ABC cắt các đường thẳng GA, GB, GC tại A', B', C' theo thứ tự đó. Chứng minh rằng trong ba đại lượng \(\frac{GA}{GA'};\frac{GB}{GB'};\frac{GC}{GC'}\) có một đại lượng bằng tổng hai đại lượng còn lại

BD
22 tháng 3 2016 lúc 15:59

Yêu cầu bài toán tương đương với 

\(\frac{\overrightarrow{GA}}{\overrightarrow{GA'}}+\frac{\overrightarrow{GB}}{\overrightarrow{GB'}}+\frac{\overrightarrow{GC}}{\overrightarrow{GC'}}=0\) (1)

Gọi \(X_1\)  là điểm trên đường thẳng AB sao cho \(XX_1\) // \(\Delta\) (tức là  \(X_1\)  là hình chiếu song song của điểm X trên đường thẳng AB theo phương chiếu  \(\Delta\) .

 Khi đó \(A_1\equiv A,B_1\equiv B,A'_1\equiv B'_1\equiv C'_1,\)

Theo định lí Ta-lét ta có :

\(\frac{\overrightarrow{GA}}{\overrightarrow{GA'}}=\frac{\overrightarrow{G_1A}}{\overrightarrow{G_1A_1'}};\frac{\overrightarrow{GB}}{\overrightarrow{GB'}}=\frac{\overrightarrow{G_1B}}{\overrightarrow{G_1B_1'}};\frac{\overrightarrow{GC}}{\overrightarrow{GC'}}=\frac{\overrightarrow{G_1C_1}}{\overrightarrow{G_1C_1'}};\)

Suy ra 

\(\frac{\overrightarrow{GA}}{\overrightarrow{GA'}}+\frac{\overrightarrow{GB}}{\overrightarrow{GB'}}+\frac{\overrightarrow{GC}}{\overrightarrow{GC'}}=\frac{\overrightarrow{G_1A}+\overrightarrow{G_1B}+\overrightarrow{G_1C_1}}{\overrightarrow{G_1A'_1}}=0\)(2)

Lại do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\) nên \(\overrightarrow{G_1A}+\overrightarrow{G_1B}+\overrightarrow{G_1C_1}=0\)

Vậy \(\overrightarrow{G_1A}+\overrightarrow{G_1B}+\overrightarrow{G_1C_1}=0\)

Từ (1) và (2) suy ra được điều cần chứng minh

Bình luận (0)
BD
22 tháng 3 2016 lúc 15:46

A B' C' C G C1 B G1 A'1 A'

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
PD
Xem chi tiết
DQ
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
QN
Xem chi tiết