Mỗi tam giác có 3 đường trung trực.
Mỗi tam giác có 3 đường trung trực.
Vẽ tam giác ABC (không tù) và ba đường trung trực của các đoạn BC, CA, AB. Quan sát hình và cho biết ba đường trung trực đó có cùng đi qua một điểm hay không?
Mỗi tam giác có mấy đường cao?
Sử dụng tính chất đường trung trực của một đoạn thẳng, hãy giải thích nếu điểm Q cách đều 3 đỉnh của tam giác ABC thì Q phải là giao điểm ba đường trung trực của tam giác ABC.
a) Chứng minh trong tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.
b) Chứng minh rằng trong tam giác đều, điểm cách đều ba đỉnh cũng cách đều ba cạnh của tam giác.
Gọi H là trực tâm của tam giác ABC không vuông. Tìm trực tâm của các tam giác HBC, HCA, HAB.
Cho tam giác ABC có \(\widehat A = {100^0}\) và trực tâm H. Tìm góc BHC.
Dùng tính chất đường trung trực của một đoạn thẳng, hãy lập luận để suy ra tính chất nói ở HĐ1 bằng cách trả lời các câu hỏi sau:
Cho O là giao điểm các đường trung trực của hai cạnh BC và CA (H.9.38)
a) Tại sao OB = OC, OC = OA.
b) Điểm O có nằm trên đường trung trực của AB không?
Cho hai đường thẳng không vuông góc b,c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). Hãy tìm điểm B thuộc b, điểm C thuộc c sao cho tam giác ABC nhận H làm trực tâm.
Vẽ tam giác ABC và 3 đường cao của nó. Quan sát hình và cho biết, ba đường cao đó có cùng đi qua một điểm hay không?