Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác

QL

a) Chứng minh trong tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.

b) Chứng minh rằng trong tam giác đều, điểm cách đều ba đỉnh cũng cách đều ba cạnh của tam giác.

KT
19 tháng 9 2023 lúc 15:48

a) Kẻ đường trung trực của đoạn thẳng BC, cắt BC tại D

Ta có: Tam giác ABC cân nên AB = AC

\( \Rightarrow A\)thuộc đường trung trực của cạnh BC (t/c)

\( \Rightarrow AD\)là đường trung trực của BC.

Xét \(\Delta ABD\)và \(\Delta ACD\)có:

AB = AC (gt)

BD = CD (gt)

AD: cạnh chung

\( \Rightarrow \Delta ABD = \Delta ACD\left( {c - c - c} \right)\)

\( \Rightarrow \widehat {BAD} = \widehat {CAD}\)

\( \Rightarrow \)AD là tia phân giác góc BAC.

Vậy tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.

b)

Ta có: Điểm cách đều ba đỉnh của tam giác là giao điểm ba đường trung trực của tam giác đó.

Tam giác ABC đều nên AB = BC = CA

Tam giác ABC cân tại A có AN là đường trung tuyến

\( \Rightarrow \) AN là đường phân giác xuất phát từ đỉnh A (cm ở ý a)

Tương tự: BP, CM lần lượt là đường phân giác xuất phát từ B và C của tam giác ABC

Mà AN cắt BP tại G

\( \Rightarrow G\) là giao điểm ba đường phân giác của tam giác ABC

\( \Rightarrow G\) cách đều ba cạnh của tam giác ABC (Tính chất

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết