Chương II : Tam giác

NH

Mng giúp e bài này vs:
Cho tam giác ABC có AC > AB, M là trung điểm của cạnh BC . Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Nối C với D.
 a) Chứng minh góc ADC lớn hơn góc DAC. Từ đó suy ra: góc MAB lớn hơn góc MAC.
 b) Kẻ đường cao AH. Gọi E là một điểm nằm giữa A và H. So sánh HC và HB, EC và EB

KL
6 tháng 2 2024 lúc 7:05

loading...  

a) Do M là trung điểm của BC (gt)

⇒ MB = MC

Xét ∆AMB và ∆DMC có:

AM = DM (gt)

∠AMB = ∠DMC (đối đỉnh)

MB = MC (cmt)

⇒ ∆AMB = ∆DMC (c-g-c)

⇒ AB = CD

Mà AC > AB (gt)

⇒ AC > CD

∆ACD có:

AC > CD (cmt)

⇒ ∠ADC > ∠DAC

Do ∆AMB = ∆DMC (cmt)

⇒ ∠MAB = ∠MDC (hai góc tương ứng)

⇒ ∠MAB = ∠ADC

Mà ∠ADC > ∠DAC (cmt)

⇒ ∠MAB > ∠MAC

b) Do AC > AB (gt)

AH là đường vuông góc hạ từ A đến BC

⇒ HC > HB (đường xiên nào lớn hơn thì hình chiếu lớn hơn)

Do E nằm giữa A và H (gt)

⇒ EH là đường vuông góc hạ từ E đến BC

Mà HC > HB (cmt)

⇒ EC > EB (đường xiên nào có hình chiếu lớn hơn thì lớn hơn)

Bình luận (0)

Các câu hỏi tương tự
LS
Xem chi tiết
NP
Xem chi tiết
CN
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
YJ
Xem chi tiết
NM
Xem chi tiết
VN
Xem chi tiết
PM
Xem chi tiết
HU
Xem chi tiết