Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

JE

giải pt

a) \(x\sqrt{x^2-4x+3}=x^2+x\)

b) \(x^2+x-12-\left(x-3\right)\sqrt{10-x^2}=0\)

c) \(\sqrt{6+x-x^2}=\frac{\left(2x+5\right)\sqrt{6+x-x^2}}{x+4}\)

d) \(\sqrt{\frac{12+x-x^2}{2x+9}}-\frac{\sqrt{12+x-x^2}}{x+3}=0\)

e) \(\sqrt{x^3}+\sqrt{x^3+x^2+2x}=3\sqrt{x}\)

NT
1 tháng 10 2019 lúc 22:46

a, ĐK:\(x^2-4x+3\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\3\le x\end{matrix}\right.\)

\(PT\Leftrightarrow x\sqrt{x^2-4x+3}=x\left(x+1\right)\)

Với x = 0 \(\Rightarrow pttm\)

Với \(x\ne0\) \(\Rightarrow\sqrt{x^2-4x+3}=x+1\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+3=x^2+2x+1\end{matrix}\right.\)\(\Rightarrow x=\frac{1}{3}\left(tm\right)\)

Bình luận (0)
NT
1 tháng 10 2019 lúc 23:31

b,ĐK: \(-\sqrt{10}\le x\le\sqrt{10}\)

\(PT\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\sqrt{10-x^2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x+4-\sqrt{10-x^2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x+4=\sqrt{10-x^2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x^2+8x+16=10-x^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2+4x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tm)

Bình luận (0)
NL
8 tháng 10 2019 lúc 23:17

c/ ĐKXĐ: \(-2\le x\le3\)

\(\Leftrightarrow\left(x+4\right)\sqrt{6+x-x^2}-\left(2x+5\right)\sqrt{6+x-x^2}=0\)

\(\Leftrightarrow\sqrt{6+x-x^2}\left(x+4-2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+6=0\\-x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\\x=3\end{matrix}\right.\)

d/ ĐKXĐ: \(3< x\le4\)

\(\Leftrightarrow\sqrt{-x^2+x+12}\left(\frac{1}{\sqrt{2x+9}}-\frac{1}{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+12=0\\\sqrt{2x+9}=x+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+12=0\\2x+9=x^2+6x+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+12=0\\x^2+4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\x=4\\x=0\\x=-4\left(l\right)\end{matrix}\right.\)

e/ ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{x}\left(x+\sqrt{x^2+x+2}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\Rightarrow x=0\\\sqrt{x^2+x+2}=3-x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}3-x\ge0\\x^2+x+2=\left(3-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\7x=7\end{matrix}\right.\) \(\Rightarrow x=1\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
TH
Xem chi tiết
VP
Xem chi tiết
JE
Xem chi tiết
LT
Xem chi tiết
JE
Xem chi tiết