Hàm số lũy thừa, hàm số mũ và hàm lôgarit

TH

m.n giải giúp mình vs ạ

a) \(6^x-2^x=32\)

b) \(5^{7^x}=7^{5^x}\)

c) \(\log_x\left(x+1\right)=\log_{1,5}\)

d) \(3^x+3^{-x}=\sqrt[2]{8-x^2}\)

e)\(x^{\log_2\left(9\right)}=x^2\cdot3^{\log_2x}-x^{\log_23}_{ }\)

AH
25 tháng 1 2017 lúc 23:10

Lời giải:

a) Vì \(6^x-2^x>0\Rightarrow x>0\)

Xét \(y=6^x-2^x-32\)\(y'=\ln 6.6^x-\ln 2.2^x>0\forall x>0\) nên hàm $y$ đồng biến trên \(x\in(0,+\infty)\).

Khi đó phương trình \(6^x-2^x=32\) có nghiệm duy nhất $x=2$

b) Có \(5^{7^x}=7^{5^x}\Leftrightarrow \log(5^{7^x})=\log (7^{5^x})\)

\(\Leftrightarrow 7^x\log 5=5^x\log 7=7^{x\frac{\log 5}{\log 7}}\log 7\)

\(\Leftrightarrow 7^{x(1-\frac{\log 5}{\log 7})}=\frac{\log 7}{\log 5}=10^{x\log 7(1-\frac{\log 5}{\log 7})}=10^{x\log(\frac{7}{5})}\)

\(\Leftrightarrow x\log\frac{7}{5}=\log\left ( \frac{\log 7}{\log 5} \right )\)\(\Rightarrow x=\frac{\log\left ( \frac{\log 7}{\log 5} \right )}{\log\frac{7}{5}}\)

Bình luận (0)
AH
27 tháng 1 2017 lúc 0:07

d) ĐKXĐ:...........

\(3^x+\frac{1}{3^x}=\sqrt{8-x^2}\Leftrightarrow 9^x+\frac{1}{9^x}+2=8-x^2\)

\(\Leftrightarrow 9^x+\frac{1}{9^x}+x^2=6\)

Giả sử \(x\geq 0\) . Xét hàm \(y=9^x+\frac{1}{9^x}+x^2\)\(y'=9^x\ln 9-\frac{\ln 9}{9^x}+2x\geq 0\) nên hàm đồng biến trên \(x\in [0,+\infty)\)

Do đó PT \(9^x+\frac{1}{9^x}+x^2=6\) với $x\geq 0$ có nghiệm duy nhất \(x\approx 0,753897\)

---------------------------------------------------------------------------------

Vì hàm \(y\) là hàm chẵn nên $-x$ cũng là nghiệm, do đó tổng kết lại PT có nghiệm là \(x\approx \pm 0,753897\)

Bình luận (0)
AH
27 tháng 1 2017 lúc 1:09

e) ĐK: $x>0$

\(\text{PT}\Leftrightarrow x^{\log_29}+x^{\log_23}=x^2.3^{\log_2x}\)

\(\Leftrightarrow x^{2\log_23}+x^{log_23}=x^2.x^{log_23}\Leftrightarrow x^{log_23}(x^{\log_23}+1-x^2)=0\)

\(\Leftrightarrow x^{\log_23}+1-x^2=0\) (do \(x>0\))

Dễ thấy \(x^2>x^{\log_23}\Rightarrow x>1\)

Xét hàm \(y=x^2-x^{\log_23}\Rightarrow y'=2x-\log_23x^{\log_23-1}>0\forall x>1\) nên hàm $y$ là hàm đồng biến

Do đó PT có nghiệm duy nhất $x=2$

c) Có lẽ bạn type thiếu đề

Bình luận (0)
TK
21 tháng 11 2016 lúc 22:10

a)\(6^x-2^x=32\)

\(\Leftrightarrow6^x=32+2^x\)

\(\Leftrightarrow2^x\cdot3^x=2^x+2^5\)

Chia 2 vế cho 2x ta có:

\(3^x=1+2^{5-x}\)

\(\Rightarrow1=3^x-2^{5-x}\)

nhẩm ra x=2

Bình luận (0)
TK
21 tháng 11 2016 lúc 22:11

ko chắc đúng đâu vì mk chưa học nhiều về cái này hỏi quản lí thử

Bình luận (0)

Các câu hỏi tương tự
HB
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết