Mấy Thánh giỏi toán 7 giúp đỡ em bài này với :
1)Cho :\(\Delta ABC\) Ax lầ tia đối của tia AB, Ay là tia phân giác của \(\widehat{xAC}\), hai tia phân giác của \(\widehat{B};\widehat{C}\)cắt nhau tại O. Chứng minh \(\widehat{BAy;}\widehat{BOC}\)
2)Cho \(\Delta ABC\).Cấc tia phân giác của \(\widehat{B};\widehat{C}\) cắt nhau tại O .Chứng minh rằng \(\widehat{BOC}=90^o+\dfrac{\widehat{A}}{2}\)
3)Cho \(\Delta\)ABC có \(\widehat{B}>\widehat{C}\),kẻ AH vuông góc với BC (H\(\in\)BC) AM lầ tia phân giác của \(\widehat{BAC}\left(M\in BC\right)\) Tính \(\widehat{MAH}\) theo \(\widehat{B}\)và \(\widehat{C}\) của \(\Delta\)ABC
Câu 2:
Xét ΔABC có \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Leftrightarrow\widehat{ACB}+\widehat{ABC}=180^0-\widehat{A}\)
\(\Leftrightarrow\widehat{OBC}+\widehat{OCB}=90^0-\dfrac{1}{2}\widehat{A}\)
Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)
\(\Leftrightarrow\widehat{BOC}=180^0-90^0+\dfrac{1}{2}\widehat{A}=90^0+\dfrac{\widehat{A}}{2}\)