Câu 5 hả, cx dễ mà :V Sợ mk giải xg có anh hùng máy tính nhanh tay hơn roài
Ta có :
\(B=\dfrac{1+2+2^2+2^3+...................+2^{2014}}{1-2^{2015}}\)
Bây giờ bn tách riêng tính tử trước :
Đặt :
\(A=1+2+2^2+.................+2^{2014}\)
\(C=1-2^{2015}\)
Bắt đầu tính nè :
\(A=1+2+2^2+...............+2^{2014}\)
\(\Rightarrow2A=2+2^2+2^3+..................+2^{2014}+2^{2015}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+.....+2^{2015}\right)-\left(1+2+.....+2^{2014}\right)\)
\(\Rightarrow A=1-2^{2015}\)
Ta thấy :
\(B=\dfrac{A}{C}=\dfrac{1-2^{2015}}{1-2^{2015}}=1\)
\(\Rightarrow B=1\)
Đặt
S=1+2+22+23+........+22014
2S=2(1+2+22+23+........+22014)
2S=2+22+23+24+..............+22015
2S-S=(2+22+23+24+.............+22015)-(1+2+22+23+.........+22014)
S=22015-1
Ta thấy: S là tử B
thay S vào B ta có:
B=\(\dfrac{2^{2015}-1}{1-2^{2015}}=-1\)
Coi A = 1+2+22+23+...+22014
2A = 2+22+23+24+...+22015
2A\(-\)A = (1+2+22+23+...+22014)\(-\)(2+22+23+24+...+22015)
A = 1-22015
\(\Rightarrow\) B = \(\dfrac{1-2^{2015}}{1-2^{2015}}=1\)
Vậy B = 1
Ta có: \(B=\dfrac{1+2+2^2+2^3+...+2^{2014}}{1-2^{2015}}\)
\(\Rightarrow2B=\dfrac{2+2^2+2^3+2^4+...+2^{2015}}{1-2^{2015}}\)
\(\Rightarrow2B-B=\dfrac{2+2^2+2^3+2^4+...+2^{2015}}{1-2^{2015}}-\dfrac{1+2+2^2+2^3+...+2^{2014}}{1-2^{2015}}\)
\(\Rightarrow B=\dfrac{2^{2015}-1}{1-2^{2015}}=-1\)
Vậy \(B=-1\).
Đặt S=1+2+22 +...+22014
\(\Rightarrow\) 2S=2=22+23+...+22015
\(\Rightarrow\)S=22015-1
\(\Rightarrow\) B=22015-1/1-22015
\(\Rightarrow\) B= -1