giải phương trình: \(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
Q= \(\frac{\sqrt{a}\left(1-a\right)^2}{1-a^2}:\left[\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
a) Rút gọn biểu thức Q? b) Xét dấu of biểu thức P= a.(Q-\(\frac{1}{2}\))
A = \(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)
a) rút gọn A
b) Tính A với a = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
1.Chmr rằng nếu: a,b >0 thì \(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)
2. Rg biểu thức:
\(A=\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
C=\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\)
Cho a, b, c > 0 thoả mãn: a + b + c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) = 2. Chứng minh: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\left(1+c\right)\right)}}\)
Cho a, b, c > 0 thoả mãn a + b + c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) = 2. Chứng minh: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}=\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Rút gọn: A= \(\left(\frac{1}{\sqrt{a}+\sqrt{a+1}}-\frac{1}{\sqrt{a}-\sqrt{a-1}}\right):\left(1+\frac{\sqrt{a+1}}{\sqrt{a-1}}\right)\)
P=\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a) rút gọn P