Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho dãy số (un) xác định bởi \(\left\{{}\begin{matrix}u_1=\sqrt{3}\\u_{n+1}=\frac{u_n+\sqrt{2}-1}{1+\left(1-\sqrt{2}\right)u_n},n=1,2,3,....\end{matrix}\right.\). Tính u2018
Bài 1: Cho dãy (Un): \(\left\{{}\begin{matrix}U_1=1\\U_{n+1}=2U_n+3\end{matrix}\right.\)
a) Tìm: U5
b) Tìm số hạng tổng quát của dãy (Un)
Bài 2: Xét tính tăng, giảm
a) \(U_n=\dfrac{\sqrt{n+1}-\sqrt{n}}{n}\)
b) \(\left(U_n\right):\left\{{}\begin{matrix}U_n=3\\U_{n+1}=\sqrt{1+U_n^2}\end{matrix}\right.\)
Bài 3: Tìm a để (Un): \(U_n=\dfrac{an+2}{n+1}\) là dãy tăng
Bài 4: Xét tính bị chặn:
a) \(U_n=\dfrac{n^2+1}{2n^2-3}\)
b) \(U_n=\dfrac{n-1}{\sqrt{n^2+1}}\)
Bài 5: Cho dãy: \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_n+1=\sqrt{U_n+2}\end{matrix}\right.\), (Un)
Chứng minh rằng: (U1) tăng, bị chặn trên bởi 2
Cho dãy số \(u_n\) thỏa mãn: \(\left\{{}\begin{matrix}u_1=2018\\u_{n+1}=\dfrac{u_n}{\sqrt{1+u_n^2}}\end{matrix}\right.\). Tìm giá trị nhỏ nhất của n để \(u_n< \dfrac{1}{2018}\)
Cho dãy (un) \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\u_n=\dfrac{\sqrt{u_{n-1}^2+4u_{n-1}}+u_{n-1}}{2}\forall n\ge2\end{matrix}\right.\)
Tinh \(\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{u_1^2}+\dfrac{1}{u_2^2}+...+\dfrac{1}{u_n^2}\right)\)
Cho dãy số (Un) được xác định như sau: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\sqrt{u_n.\left(u_n+1\right).\left(u_n+2\right).\left(u_n+3\right)+1}\end{matrix}\right.,\forall n\in N\). Đặt \(v_n=\sum\limits^n_{i=1}\dfrac{1}{u_i+2}\). Tính \(v_{2020}\)
Cho \(\left(U_n\right):\left\{{}\begin{matrix}u_1=2019\\u_n=\dfrac{-2019}{n}.\left(u_1+u_2+...+u_{n-1}\right)\end{matrix}\right.\). Tính: \(A=2u_1+2^2u_2+...+2^{2019}u_{2019}\)
Chứng minh rằng dãy số \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{u_n+2}\end{matrix}\right.\) tăng và bị chặn trên bởi 2
Tìm số hạng tổng quát của \(\left(u_n\right)\) biết \(\left(u_n\right):\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\u_{n+1}=u_n^2\end{matrix}\right.\).
cho dãy số(un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\sqrt{\dfrac{n+1}{n}}\left(u_n+3\right)-3\end{matrix}\right.\) ,n=1,2,...Tìm công thức tổng quát của dãy số (un) và tính \(\lim\limits\dfrac{u_n}{\sqrt{n}}\) .