Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

BB

Chứng minh rằng dãy số \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{u_n+2}\end{matrix}\right.\) tăng và bị chặn trên bởi 2

NT
5 tháng 12 2023 lúc 15:01

\(u_{n+1}-u_n\)

\(=\sqrt{u_n+2}-u_n\)

\(=\dfrac{u_n+2-u_n^2}{\sqrt{u_n+2}+u_n}=\dfrac{-\left(u_n-2\right)\left(u_n+1\right)}{\sqrt{u_n+2}+u_n}\)

\(u_{n+1}=\sqrt{u_n+2}\)

=>\(u_{n+1}^2=u_n+2\)

=>\(u_{n+1}^2-4=u_n-2\)

=>\(\left(u_{n+1}-2\right)\left(u_{n+1}+2\right)=u_n-2\)

Để \(u_n< 2\) thì \(u_n-2< 0\)

=>\(u_{n+1}-2< 0\)

=>\(u_n< 2\forall n>=1\)

=>\(u_{n+1}-u_n>0\)

=>Đây là dãy tăng và bị chặn trên bởi 2

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BB
Xem chi tiết
VP
Xem chi tiết
BB
Xem chi tiết
KR
Xem chi tiết
TT
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết