Chương 2: TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG

NC

\(\left\{{}\begin{matrix}4x^3-3x+\left(y-1\right)\sqrt{2y+1}=\dfrac{1}{2}\\2x^2+x+\sqrt{-y\left(2y+1\right)}=0\end{matrix}\right.\)

NH
24 tháng 6 2021 lúc 22:26

\(\left\{{}\begin{matrix}4x^3-3x+\left(y-1\right)\sqrt{2y+1}=0\left(1\right)\\2x^2+x+\sqrt{-y\left(2y+1\right)}=0\left(2\right)\end{matrix}\right.\)

Đk: \(-\dfrac{1}{2}\le y\le0\)

pt (1)\(\Leftrightarrow\left(2y-2\right)\sqrt{2y+1}=-8x^3+6x\Leftrightarrow\left[\left(2y+1\right)-3\right]\sqrt{2y+1}=\left(-2x\right)^3-3\left(-2x\right)\left(3\right)\)

đặt \(\left\{{}\begin{matrix}u=-2x\\v=\sqrt{2y+1}\end{matrix}\right.\) pt (3) -> \(u^3-3u=v^3-3v\left(4\right)\)

có: \(-\dfrac{1}{2}\le y\le0\) nên \(0\le2y+1\le1\Rightarrow0\le\sqrt{2y+1}\le1hay0\le v\le1\)

từ (2), có: \(\sqrt{-y\left(2y+1\right)}=-2x^2-x\Rightarrow-2x^2-x\ge0\Rightarrow-\dfrac{1}{2}\le x\le0\Rightarrow0\le-2x\le1hay0\le u\le1\)

xét hàm số \(f\left(t\right)=t^3-3t\) liên tục trên [0;1]

\(f'\left(t\right)=3t^2-3=3\left(t^2-1\right)\le0\forall t\in\left[0;1\right]\) nên \(f\left(t\right)\) nghịch biến trên [0;1]

do đó (4)\(\Leftrightarrow f\left(u\right)=f\left(v\right)\Leftrightarrow u=v\Leftrightarrow-2x=\sqrt{2y+1}\Leftrightarrow y=\dfrac{4x^2-1}{2}\)

thay \(y=\dfrac{4x^2-1}{2}\) vào pt (2), có:

\(2x^2+x+\sqrt{\dfrac{\left(1-4x\right)^2}{2}\left(4x^2\right)}=0\Leftrightarrow2x^2+x-x\sqrt{2-8x^2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+1-\sqrt{2-8x^2}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\12x^2+4x-1=0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}vx=\dfrac{1}{6}\end{matrix}\right.\)

đk \(-\dfrac{1}{2}\le x\le0\) ta nhận nghiệm \(x=0;x=-\dfrac{1}{2}\)

+ Với x=0 có y=-1/2 (nhận)

+với x=-1/2 có y=0 ( nhận)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
KR
Xem chi tiết
NY
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
HK
Xem chi tiết
H24
Xem chi tiết
MH
Xem chi tiết
MS
Xem chi tiết