a) \(\cos^2\)α+ \(\cos^2\)β + \(\cos^2\)α.\(\sin^2\)β +\(^{ }\sin^2\)α
b) 2(\(\sin\)α - \(\cos\)α)\(^2\) - ( \(\left(\sin\alpha+\cos\alpha\right)^{2^{ }}+\left(\sin\alpha.\cos\alpha\right)\)
c) \(\left(\tan\alpha-\cot\alpha\right)^2-\left(\tan\alpha+\cos\alpha\right)^2\)
Tính
sin6α + sin6β + 3sin2α.cos2α
Bài 1: Cho \(\alpha\&\beta\) là hai góc phụ nhau . Biết \(\cos\alpha=\dfrac{1}{2}\). Tính giá trị của biểu thức : P = \(3\sin^2\alpha+4\tan^3\beta\)
Bài 2: a) Tính P = \(4\sin^2\alpha-6\cos^2\alpha\) , biết \(\cos\alpha=\dfrac{4}{5}\)
b) Cho \(\alpha\) là góc nhọn . Rút gọn biểu thức : A = \(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
Giúp mình vs cần gấp lắm !!!
rút gọn biểu thức :
A = 1 + \(\dfrac{2\sin\alpha.\cos\alpha}{\cos^2\alpha-\sin^2\alpha}\)
B = \(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
Sin² α+ cos^4 α + 2sin α . cos^2 α
Sin^6 α – sin^6 α + 3sin α . Cos^2 α
Rút gọn các biểu thức:
a)\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)\
b) \(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
Cho hai góc nhọn α và β thỏa mãn \(0^o\)<α+β<\(90^0\). Chứng minh: cos(α+β)=cosα.cosβ-sinα.sinβ
Chứng minh:
a)\(cot^2\alpha-cos^2\alpha\cdot cot^2\alpha=cos^2\alpha\)
b)\(tan^2\alpha-sin^2\alpha\cdot tan^2\alpha=sin^2\alpha\)
c) \(\dfrac{1-cos^2}{sin\alpha}\) = \(\dfrac{sin\alpha}{1+cos\alpha}\)
d)\(tan^2\alpha-sin^2\alpha=tan^2\cdot sin^2\alpha\)
e) \(\sin^6\alpha+cos^6\alpha+3sin^2\cdot cos^2\alpha=1\)
a) Cho góc α < 90o có sin α = \(\dfrac{1}{3}\). Tính cos α, tg α, ctg α.
b) Cho góc β < 90o có tan β = 2. Tính sin β, cos β.