Chương I - Căn bậc hai. Căn bậc ba

HS

K=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)

a) Tìm đkxđ

b) Tính giá trị của k khi a=3+2\(\sqrt{2}\)

c) Tìm các giá trị của a sao cho K<0

H24
23 tháng 6 2021 lúc 16:14

a) đk: \(a>0;a\ne1\)

b) Xét K = \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(\dfrac{\sqrt{a}+1}{\sqrt{a}}:\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(\dfrac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)\)

\(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

Xét \(a=3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)

<=> \(\sqrt{a}=1+\sqrt{2}\)

<=> K = \(\dfrac{\left(\sqrt{2}+2\right)\sqrt{2}}{\sqrt{2}+1}=2\)

c) Đẻ K < 0

<=> \(\dfrac{a-1}{\sqrt{a}}< 0\)

Mà \(\sqrt{a}>0\)

<=> a < 1

<=> 0 < a < 1

Bình luận (1)

Các câu hỏi tương tự
DD
Xem chi tiết
MN
Xem chi tiết
DY
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
LL
Xem chi tiết
LG
Xem chi tiết