Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương I - Căn bậc hai. Căn bậc ba

NH

1. Cho biểu thức B :

B= \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)

a. Rút gọn B

b. Tính giá trị K khi a= \(3+2\sqrt{2}\)

c. Tìm các giá trị của a sao cho K<0

AH
13 tháng 7 2018 lúc 16:26

Lời giải:

ĐK: \(a>0; a\neq 1\)

a) \(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right): \left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)

\(B=\left(\frac{a}{a-\sqrt{a}}-\frac{1}{a-\sqrt{a}}\right): \left(\frac{\sqrt{a}-1}{(\sqrt{a}+1)(\sqrt{a}-1)}+\frac{2}{a-1}\right)\)

\(=\frac{a-1}{a-\sqrt{a}}:\left(\frac{\sqrt{a}-1}{a-1}+\frac{2}{a-1}\right)\)

\(=\frac{a-1}{a-\sqrt{a}}: \frac{\sqrt{a}+1}{a-1}=\frac{a-1}{a-\sqrt{a}}.\frac{a-1}{\sqrt{a}+1}=\frac{(a-1)^2}{\sqrt{a}(\sqrt{a}-1)(\sqrt{a}+1)}=\frac{(a-1)^2}{\sqrt{a}(a-1)}=\frac{a-1}{\sqrt{a}}\)

b) Ta có:
\(a=3+2\sqrt{2}=2+1+2\sqrt{2}=(\sqrt{2}+1)^2\)

\(\Rightarrow K=\frac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\frac{2+2\sqrt{2}}{\sqrt{2}+1}=\frac{2(1+\sqrt{2})}{\sqrt{2}+1}=2\)

c) \(K< 0\leftrightarrow \frac{a-1}{\sqrt{a}}< 0\Leftrightarrow a-1< 0\) (do \(\sqrt{a}>0\))

\(\Leftrightarrow a< 1\)

Vậy \(0< a< 1\)

Bình luận (2)

Các câu hỏi tương tự
HS
Xem chi tiết
LL
Xem chi tiết
DD
Xem chi tiết
LL
Xem chi tiết
MN
Xem chi tiết
NT
Xem chi tiết
LG
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết