\(\text{Có }:\left(\dfrac{2015-2014}{2015+2014}\right)^2=\dfrac{\left(2015-2014\right)^2}{2015^2+2\cdot2015\cdot2014+2014^2}\\ \dfrac{2015^2-2014^2}{2015^2+2014^2}=\dfrac{\left(2015-2014\right)\left(2015+2014\right)}{2015^2+2014^2}\)
\(\text{Do }2015-2014< 2015+2014\\ \Rightarrow\left(2015-2014\right)^2< \left(2015+2014\right)\left(2015-2014\right)\\ \Rightarrow\dfrac{\left(2015-2014\right)^2}{2015^2+2\cdot2015\cdot2014+2014^2}< \dfrac{\left(2015+2014\right)\left(2015-2014\right)}{2015^2+2\cdot2015\cdot2014+2014^2}\)
\(\text{Mà }2015^2+2\cdot2015\cdot2014+2014^2>2015^2+2014^2\\ \Rightarrow\dfrac{\left(2015+2014\right)\left(2015-2014\right)}{2015^2+2\cdot2015\cdot2014+2014^2}< \dfrac{\left(2015+2014\right)\left(2015-2014\right)}{2015^2+2014^2}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\dfrac{\left(2015-2014\right)^2}{2015^2+2\cdot2015\cdot2014+2014^2}< \dfrac{\left(2015+2014\right)\left(2015-2014\right)}{2015^2+2014^2}\)
\(\Rightarrow\left(\dfrac{2015-2014}{\left(2015+2014\right)}\right)^2< \dfrac{2015^2-2014^2}{2015^2+2014^2}\)