Bài 1: Nguyên hàm

TN

\(\int\sqrt{e^x-1}dx\)

\(\int\frac{\sqrt{1+x^2}}{x^4}dx\)

AH
28 tháng 12 2016 lúc 20:50

Câu 1:Gọi biểu thức là $A$. Đặt \(\sqrt{e^x-1}=t\)

\(\Rightarrow e^x=t^2+1\Rightarrow d(e^x)=d(t^2+1)=2tdt=e^xdx=(t^2+1)dx\)

\(\Rightarrow \int \frac{2t^2}{t^2+1}dt=\int \left (2-\frac{2}{t^2+1} \right)dt\)

Đặt \(t=\tan m\Rightarrow dt=\frac{dm}{\cos^2 m}\Rightarrow \int \frac{2dt}{t^2+1}=\int 2dm=2m\)

\(\Rightarrow A=2t-2m+c=2\sqrt{e^x-1}-2\tan ^{-1} (\sqrt{e^x-1})+c\)

Câu 2: Đặt \(x=\tan t\Rightarrow dx=\frac{dt}{\cos^2 t}, x^2+1=\frac{1}{\cos^2 t}\) với \(\frac{-\pi}{2} < t< \frac{\pi}{2}\)

Gọi biểu thức là $B$. Ta có

\(B=\int \frac{\cos t dt}{\sin ^4t}=\int \frac{d(\sin t)}{\sin^4 t}=\frac{-\sin ^{-3} t}{3}+c\) \(=-\frac{\sqrt{(x^2+1)^3}}{3x^3}+c\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
TH
Xem chi tiết
PT
Xem chi tiết
KD
Xem chi tiết
PT
Xem chi tiết
PP
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết