\(I=\int\left(tanx+tan^3x\right)dx=\int tanx\left(1+tan^2x\right)dx\)
\(I=\int tanx\dfrac{1}{cos^2x}dx\)
Đặt \(tanx=t\Rightarrow\dfrac{dx}{cos^2x}=dt\)
\(\Rightarrow I=\int t.dt=\dfrac{t^2}{2}+C=\dfrac{tan^2x}{2}+C\)
\(I=\int\left(tanx+tan^3x\right)dx=\int tanx\left(1+tan^2x\right)dx\)
\(I=\int tanx\dfrac{1}{cos^2x}dx\)
Đặt \(tanx=t\Rightarrow\dfrac{dx}{cos^2x}=dt\)
\(\Rightarrow I=\int t.dt=\dfrac{t^2}{2}+C=\dfrac{tan^2x}{2}+C\)
Tính tích phân :
\(\int\limits^e_1\ln^3xdx\)
a) \(\int sin2x.cosxdx\)
b) \(\int tanxdx\)
c) \(\int\dfrac{sinx}{1+3cosx}dx\)
d) \(\int sin^3xdx\)
e) \(\int sin^2xdx\)
f) \(\int cos^23x\)
g) \(f\left(x\right)=\dfrac{1}{sin^2x.cos^2x}\)
h) \(f\left(x\right)=\dfrac{cos2x}{sin^2x.cos^2x}\)
i) \(\int2sin3x.cos2xdx\)
j) \(\int e^x\left(2+\dfrac{e^{-x}}{cos^2x}\right)dx\)
nt. Giải giúp em với ạ
36. Biết \(\int\limits^{\frac{\pi}{4}}_0\frac{1}{1+tanx}dx\) = \(a\pi+bln2\) với a;b là các số hữu tỉ. Tính tỉ số \(\frac{a}{b}\)
\(\int tan\left(x\right)-ln^{15}\left(cos\left(x\right)\right)dx\)
\(\int\dfrac{x^4+x^2+1}{2x^3+5x^2-7}dx\)
tính nguyên hàm , ai giúp mình 2 bài này với hoặc 1 bài thôi cũng đc ạ , xin cảm ơn nhiều.
\(\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\ln\left(\tan x\right)}{\sin2x}dx\)
Tính tích phân :
\(I=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{3}}\frac{\ln\left(4\tan x\right)}{\sin2x.\ln\left(2\tan x\right)}dx\)
Cho \(\int\limits^{\frac{\pi}{2}}_{a-2}\cos\left(x\right)^{\sin x}dx=a\) và \(\int\limits^{\pi}_{a-2}\sqrt{\tan\left(x\right)}dx=2a-4\) ( với a là số nguyên dương ). Khi này tính: \(\int\limits^{a+2}_{a-2}\ln\left(x\right)dx\) bằng:
a) \(2\ln4-4\)
b) \(4\ln4-4\)
c) \(4\ln2-4\)
d) \(4\ln2-2\)
Tính nguyên hàm của:
1, \(\int\)\(\dfrac{x^3}{x-2}dx\)
2, \(\int\)\(\dfrac{dx}{x\sqrt{x^2+1}}\)
3, \(\int\)\((\dfrac{5}{x}+\sqrt{x^3})dx\)
4, \(\int\)\(\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx\)
5, \(\int\)\(\dfrac{dx}{\sqrt{1-x^2}}\)
a) \(\int sin^2\frac{x}{2}dx\)
b) \(\int cos^2\frac{x}{2}dx\)
c) \(\int\frac{2x+1}{x^2+x+5}dx\)
d) \(\int\left(2tanx+cotx\right)^2dx\)