a/ \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\)
Với mọi x ta có :
\(\left(x-10\right)^2\ge0\)
\(\Leftrightarrow\left(x-10\right)^2+1\ge1\)
\(\Leftrightarrow A\ge1\)
Dấu bằng xảy ra khi \(x=10\)
Vậy....
b/ \(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\)
Với mọi x ta có :
\(\left(x^2+5x\right)^2\ge0\)
\(\Leftrightarrow\left(x^2+5x\right)^2-36\ge-36\)
\(\Leftrightarrow D\ge-36\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x^2+5x\right)^2=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy..
c/ \(C=x^2-4xy+5y^2+10x-22y+2018\)
\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+2017\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+1992\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+1992\)
Với mọi x ta có :
\(\left\{{}\begin{matrix}\left(x-2y+5\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+1992\ge1992\)
\(\Leftrightarrow C\ge1992\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy..