Chương I - Căn bậc hai. Căn bậc ba

LA

HELP! Chứng minh

a, \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

b, \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)

H24
21 tháng 7 2019 lúc 19:20

Em thử nha, sai thì thôia) bình phương và rút gọn, ta cần chứng minh:

\(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2ac+2bd\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)

Tới đây có thể áp dụng bđt bunhiacopki và thu được đpcm. Nếu không thì

\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi ad = bc

Bình luận (1)
NT
21 tháng 7 2019 lúc 19:22

\( a)\sqrt {{a^2} + {b^2}} + \sqrt {{c^2} + {d^2}} \ge \sqrt {{{\left( {a + c} \right)}^2} + {{\left( {b + d} \right)}^2}} \left( * \right)\\ \Leftrightarrow {a^2} + {b^2} + {c^2} + {d^2} + 2\sqrt {{{\left( {a + b} \right)}^2}{{\left( {c + d} \right)}^2}} \ge {a^2} + 2ac + {c^2} + {b^2} + 2bd + {d^2}\\ \Leftrightarrow \sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} \ge ac + bd\left( 1 \right) \)

Nếu \(ac+bd<0\) thì (1) đúng

Nếu \(ac+bd\ge0\) thì (1) \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) (đúng)

Dấu "=" của bất đẳng thức (*) xảy ra:

\(\Leftrightarrow\left\{{}\begin{matrix}ac+bd\ge0\\\left(ad-bc\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ac+bd\ge0\\ab-bc=0\end{matrix}\right.\)

Bình luận (1)
H24
21 tháng 7 2019 lúc 19:23

b. BĐT \(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(\Leftrightarrow2a^2-4ab+2b^2\ge0\Leftrightarrow2\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi a = b

Oái, sao đơn giản thế nhỉ?

Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
NP
Xem chi tiết
HQ
Xem chi tiết
PT
Xem chi tiết
TK
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết
CN
Xem chi tiết
NA
Xem chi tiết