Chương I - Căn bậc hai. Căn bậc ba

NP

Chứng minh rằng:

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

DD
23 tháng 7 2018 lúc 14:38

Ta có :

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

\(\Leftrightarrow\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\ge\left(a+c\right)^2+\left(b+d\right)^2\)

Theo BĐT Bu - nhi - a - cốp - xki ta có :

\(\left(1^2+1^2\right)\left[\left(a^2+b^2\right)+\left(c^2+d^2\right)\right]\ge\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)

\(\left(a+c\right)^2+\left(b+d\right)^2\ge\left[\left(a+c\right)+\left(b+d\right)\right]^2\)

Mà : \(\left(1^2+1^2\right)\left[\left(a^2+b^2\right)+\left(c^2+d^2\right)\right]\ge\left[\left(a+b\right)+\left(c+d\right)\right]^2\)

\(\Rightarrow\) đpcm

Bình luận (0)
MP
22 tháng 7 2018 lúc 11:42

áp dụng bất đẳng thức mincopxki ta có đpcm

Bình luận (0)
ND
22 tháng 7 2018 lúc 11:55

Bình phương lên rồi chuyển vế tương đương nhé bạn! Tên gọi của bất đẳng thức này là Mincopxki

Bình luận (0)
NT
31 tháng 7 2018 lúc 9:19

T sẽ giải rõ ràng.

Bình phương 2 vế ta có:

\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ac+bd\right)\)\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\left(1\right)\)

+ Nếu \(ac+bd< 0\Rightarrow\) (1) đúng.

+ Nếu \(ac+bd>0\)

\(\Rightarrow\)(1) \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2d^2+b^2c^2-2abcd\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng)

Vậy BĐT đúng (đpcm)

Bình luận (0)

Các câu hỏi tương tự
LA
Xem chi tiết
TK
Xem chi tiết
TG
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
ML
Xem chi tiết
HQ
Xem chi tiết
QE
Xem chi tiết
NP
Xem chi tiết