Violympic toán 9

CQ

hai đội bóng bàn của hai trường A,B thi đấu giao hữu để chuẩn bị tranh giải toàn tỉnh. Biết rằng mỗi dấu thủ của đội trường A phải lần lượt gặp các đối thủ của trường B một lần và số trận đấu gấp 2 lần tổng số đấu thủ của 2 đội. Tìm số đấu thủ của mỗi trường

NT
22 tháng 1 2020 lúc 14:40

Gọi a và b lần lượt là số trận đấu thủ ở đội trường A và trường B, với \(a,b\in\)\(\mathbb{N^*}\)

Theo đề bài, ta có: \(ab=2\left(a+b\right)\Leftrightarrow\left(a-2\right)\left(b-2\right)=4\)

Nhận xét: Do \(a,b\in\)\(\mathbb{N^*}\) \(\Rightarrow a-2\in\)\(​​​​\mathbb{Z}\); \(b-2\)\(\in\)\(\mathbb{Z}\)

Lập bảng:

\(a-2\) \(-4\) \(-2\) \(-1\) \(1\) \(2\) \(4\)
\(b-2\) \(-1\) \(-2\) \(-4\) \(4\) \(2\) \(1\)
\(a\) \(-2\) \(0\) \(1\) \(3\) \(4\) \(6\)
\(b\) \(1\) \(0\) \(-2\) \(6\) \(4\) \(3\)

KL: \(a=4,b=4\) hoặc \(a=3,b=6\) hoặc \(a=6,b=3\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HX
Xem chi tiết
CQ
Xem chi tiết
LQ
Xem chi tiết
KA
Xem chi tiết
DT
Xem chi tiết
QL
Xem chi tiết
LN
Xem chi tiết
NA
Xem chi tiết
QL
Xem chi tiết