Chương I - Căn bậc hai. Căn bậc ba

DN

Chứng minh biểu thức không phụ thuộc vào x

\(K=\sqrt{x}+\dfrac{\sqrt[3]{2-\sqrt{3}}\cdot\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}\cdot\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

HN
7 tháng 6 2017 lúc 9:02

\(K=\sqrt{x}+\dfrac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\dfrac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\dfrac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\dfrac{1-x}{1+\sqrt{x}}=\sqrt{x}+1-\sqrt{x}=1\)

Vậy K không phụ thuộc vào x

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
QT
Xem chi tiết
BB
Xem chi tiết
TN
Xem chi tiết
AQ
Xem chi tiết
NK
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
LG
Xem chi tiết