Violympic toán 8

H24

GPT nghiệm nguyên:

3x2+4y2=6x+13

TP
11 tháng 8 2019 lúc 22:08

\(3x^2+4y^2=6x+13\)

\(\Leftrightarrow3x^2-6x+3+4y^2=16\)

\(\Leftrightarrow3\left(x^2-2x+1\right)+4y^2=16\)

\(\Leftrightarrow3\left(x-1\right)^2+\left(2y\right)^2=16\)

Ta có : \(0\le\left(2y\right)^2\le16\)

\(\Rightarrow\left(2y\right)^2\in\left\{0;1;4;9;16\right\}\)

\(\Rightarrow2y\in\left\{0;1;2;3;4\right\}\)

Mà y nguyên nên \(y\in\left\{0;1;2\right\}\)

+) Với \(y=0\Leftrightarrow3\left(x-1\right)^2=16\Leftrightarrow\left(x-1\right)^2=\frac{16}{3}\)( loại vì x nguyên )

+) Với \(y=1\Leftrightarrow3\left(x-1\right)^2=12\Leftrightarrow\left(x-1\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

+) Với \(y=2\Leftrightarrow3\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy pt có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(-1;1\right);\left(1;2\right)\right\}\)

Bình luận (0)
HM
11 tháng 8 2019 lúc 22:08

Hỏi đáp Toán

Bình luận (1)

Các câu hỏi tương tự
KC
Xem chi tiết
PT
Xem chi tiết
QD
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
LL
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
DP
Xem chi tiết