Chương I: VÉC TƠ

NB

gọi G, G' lần lượt là trọng tâm tam giác ABC và A'B'C'. CMR: \(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=3\overrightarrow{GG'}\)

TỪ ĐÓ SUY RA ĐIỀU KIỆN CẦN VẼ ĐỦ ĐỂ HAI TAM GIÁC CÓ CÙNG TRỌNG TÂM

HQ
31 tháng 7 2019 lúc 21:33

Đề: G trọng tâm tam giác ABC

và G' trọng tâm tam giác A'B'C'

Ta có: \(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{AG}+\overrightarrow{GG'}+\overrightarrow{G'A'}+\overrightarrow{BG}+\overrightarrow{GG'}+\overrightarrow{G'B'}+\overrightarrow{CG}+\overrightarrow{GG'}+\overrightarrow{G'C'}\)

\(=3\overrightarrow{GG'}+\left(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}\right)+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)\(=3\overrightarrow{GG'}+\overrightarrow{0}+\overrightarrow{0}=3\overrightarrow{GG'}\left(đpcm\right)\)

Hai tam giác có cùng trọng tâm khi và chỉ khi \(G\equiv G'\)

\(\Rightarrow\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=0\)

Bình luận (0)
TL
1 tháng 8 2019 lúc 10:44

\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{AG}+\overrightarrow{GA'}+\overrightarrow{BG}+\overrightarrow{GB'}+\overrightarrow{CG}+\overrightarrow{GC'}\\ =\left(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\right)+\left(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}\right)\\ =3\overrightarrow{GG'}-\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=3\overrightarrow{GG'}-\overrightarrow{0}=3\overrightarrow{GG'}\)

Bình luận (0)

Các câu hỏi tương tự
CM
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
TG
Xem chi tiết
TT
Xem chi tiết
TY
Xem chi tiết
TY
Xem chi tiết
YY
Xem chi tiết
TG
Xem chi tiết