Chương I - Hệ thức lượng trong tam giác vuông

TU

Gọi a, b, c lần lượt là độ dài các cạnh của tam giác ABC thoả điều kiện \(a^3+b^3+c^3=3abc.\) Chứng minh rằng: \(sin^2A+cos^2B=1\)

AH
2 tháng 7 2018 lúc 23:08

Lời giải:

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\) (đây là công thức biến đổi quen thuộc)

\(a,b,c\) là độ dài cạnh tam giác nên $a+b+c\neq 0$. Do đó:
\(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow \frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}=0\)

\((a-b)^2; (b-c)^2; (c-a)^2\geq 0\)\(\Rightarrow \frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0\)

Dấu bằng xảy ra khi \(a=b; b=c; c=a\Leftrightarrow a=b=c\) tức là tam giác $ABC$ đều. Do đó \(\angle A=\angle B=\angle C=60^0\)

\(\Rightarrow \sin^2A+\cos ^2B=(\sin 60)^2+(\cos 60)^2=1\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
LL
Xem chi tiết
BN
Xem chi tiết
AN
Xem chi tiết
AH
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết