Violympic toán 8

PB

Gọi a, b, c là độ dài 3 cạnh của tam giác ABC, biết rằng : \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

Chm tam giác ABC là tam giác đều.

TH
18 tháng 1 2019 lúc 20:05

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)

Áp dụng BĐT Cô-si cho 2 số không âm:

\(\left(a+b\right)\left(a+c\right)\left(b+c\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)

Dấu "=" xảy ra <=> a = b = c

Vậy, △ABC là tam giác đều (đpcm)

Bình luận (0)
LD
18 tháng 1 2019 lúc 20:13

Áp dụng bất đẳng thức Cô si ta có:

\(VT=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\ge2\sqrt{\dfrac{b}{a}}\cdot2\sqrt{\dfrac{c}{b}}\cdot2\sqrt{\dfrac{a}{c}}=8\sqrt{\dfrac{abc}{abc}}=8=VP\)

Dấu "=" xảy ra khi a = b = c

Mà VT = VP => a = b = c

=> tam giác ABC đều

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
DS
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
KH
Xem chi tiết
MS
Xem chi tiết
T8
Xem chi tiết
TP
Xem chi tiết