§2. Hàm số y=ax+b

NP

Giúp mình giải một bài này với :

Tìm các số nguyên dương x,y thỏa mãn \(\dfrac{11}{17}\)<\(\dfrac{x}{y}\)<\(\dfrac{23}{29}\) và 8y - 9x = 31

Cảm ơn nhiều

H24
29 tháng 4 2018 lúc 12:08

8y - 9x = 31

<=> y = (31 + 9x)/8 (1)

ta có:

\(\dfrac{11}{17}< \dfrac{x}{y}< \dfrac{23}{29}\)

<=> \(\left\{{}\begin{matrix}11y< 17x\\29x< 23y\end{matrix}\right.\) (2)

thay (1) vào (2)

=> \(\left\{{}\begin{matrix}11\left(\dfrac{31+9x}{8}\right)< 17x\\29x< 23\left(\dfrac{31+9x}{8}\right)\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\dfrac{341+99x}{8}< 17x\\29x< \dfrac{713+207x}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{341-37x}{8}< 0\\\dfrac{25x-713}{8}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}341-37x< 0\\25x-713< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{341}{37}\\x< 28,52\end{matrix}\right.\)\(\Leftrightarrow\dfrac{341}{7}< x< 28,52\)

=> x ∈ {10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28}

mà x,y nguyên dương => (x,y) = (17,23); (25;32)

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
NH
Xem chi tiết
LD
Xem chi tiết
SK
Xem chi tiết
TT
Xem chi tiết
LN
Xem chi tiết
MH
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết