A={3;6}
B={4}
Hai biến cố này không thể đồng thời xảy ra được vì \(A\cap B=\varnothing\)
A={3;6}
B={4}
Hai biến cố này không thể đồng thời xảy ra được vì \(A\cap B=\varnothing\)
Biến cố A và biến cố đối \(\overline A \) có xung khắc hay không? Tại sao?
Ở một trường trung học phổ thông X, có 19% học sinh học khá môn Ngữ văn, 32% học sinh học khá môn Toán, 7% học sinh học khá cả hai môn Ngữ văn và Toán. Chọn ngẫu nhiên một học sinh của trường X. Xét hai biến cố sau:
A: “Học sinh đó học khá môn Ngữ văn”;
B: “Học sinh đó học khá môn Toán”.
a) Hoàn thành các mệnh đề sau bằng cách tìm cụm từ thích hợp thay cho dấu “?”.
\(P\left( A \right)\) là tỉ lệ ...(?)...
\(P\left( {AB} \right)\) là...(?)...
\(P\left( B \right)\) là ...(?)...
\(P\left( {A \cup B} \right)\) là ...(?)...
b) Tại sao để tính \(P\left( {A \cup B} \right)\) ta không áp dụng được công thức \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)?
Tại sao công thức cộng xác suất cho hai biến cố xung khắc là hệ quả của công thức cộng xác suất?
Một tổ học sinh có 8 bạn, trong đó có 6 bạn thích môn Bóng đá, 4 bạn thích môn Cầu lông và 2 bạn thích cả hai môn Bóng đá và Cầu lông. Chọn ngẫu nhiên một học sinh trong tổ. Xét các biến cố sau:
E: “Học sinh được chọn thích môn Bóng đá”;
F: “Học sinh được chọn thích môn Cầu lông”.
Hai biến cố E và F có xung khắc không?
Một nhà xuất bản phát hành hai cuốn sách A và B. Thống kê cho thấy có 50% người mua sách A; 70% người mua sách B; 30% người mua cả sách A và sách B. Chọn ngẫu nhiên một người mua. Tính xác suất để:
a) Người mua đó mua ít nhất một trong hai sách A hoặc B,
b) Người mua đó không mua cả sách A và sách B.
Giải quyết bài toán trong tình huống mở đầu.
Tại tỉnh X, thống kê cho thấy trong số những người trên 50 tuổi có 8,2% mắc bệnh tim; 12,5% mắc bệnh huyết áp và 5,7% mắc cả bệnh tim và bệnh huyết áp. Từ đó, ta có thể tính được tỉ lệ dân cư trên 50 tuổi của tỉnh X không mắc cả bệnh tim và bệnh huyết áp hay không?
Gợi ý. Chọn ngẫu nhiên một người dân trên 50 tuổi của tỉnh X. Gọi A là biến cố “Người đó mắc bệnh tim”; B là biến cố “Người đó mắc bệnh huyết áp”; E là biến cố “Người đó không mắc cả bệnh tim và bệnh huyết áp”. Khi đó \(\overline E \) là biến cố “Người đó mắc bệnh tim hoặc mắc bệnh huyết áp". Ta có \(\overline E = A \cup B.\) Áp dụng công thức cộng xác suất và công thức xác suất của biến cố đối để tính \(P\left( E \right).\)
Tại các trường trung học phổ thông của một tỉnh, thống kê cho thấy có 63% giáo viên môn Toán tham khảo bộ sách giáo khoa A, 56% giáo viên môn Toán tham khảo bộ sách giáo khoa B và 28,5% giáo viên môn Toán tham khảo cả hai bộ sách giáo khoa A và B. Tính tỉ lệ giáo viên môn Toán các trường trung học phổ thông của tỉnh đó không tham khảo cả hai bộ sách giáo khoa A và B.
Một khu phố có 50 hộ gia đình nuôi chó hoặc nuôi mèo, trong đó có 18 hộ nuôi chó, 16 hộ nuôi mèo và 7 hộ nuôi cả chó và mèo. Chọn ngẫu nhiên một hộ trong khu phố trên. Tính xác suất để:
a) Hộ đó nuôi chó hoặc nuôi mèo;
b) Hộ đó không nuôi cả chó và mèo.
Một hộp đựng 5 quả cầu màu xanh và 3 quả cầu màu đỏ, có cùng kích thước và khối lượng. Chọn ngẫu nhiên hai quả cầu trong hộp. Tính xác suất để chọn được hai quả cầu có cùng màu.