Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

LD

Giải:

\(\sin^8x+\cos^8x+\cos8.x=2\)

NL
20 tháng 5 2020 lúc 18:21

\(sin^8x+cos^8x=\left(sin^4x+cos^4x\right)^2-2sin^4x.cos^4x\)

\(=\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]^2-2\left(sinx.cosx\right)^4\)

\(=\left[1-\frac{1}{2}sin^22x\right]^2-\frac{1}{8}sin^42x\)

\(=1-sin^22x+\frac{1}{8}sin^42x=1-\frac{1-cos4x}{2}+\frac{1}{8}\left(\frac{1-cos4x}{2}\right)^2\)

\(=\frac{35}{64}+\frac{7}{16}cos4x+\frac{1}{64}cos8x\)

Pt đã cho trở thành:

\(\frac{35}{64}+\frac{7}{16}cos4x+\frac{65}{64}cos8x=2\)

\(\Leftrightarrow\frac{65}{64}\left(2cos^24x-1\right)+\frac{7}{16}cos4x-\frac{93}{64}=0\)

\(\Leftrightarrow130cos^24x+28cos4x-158=0\)

\(\Rightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{158}{130}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow4x=k2\pi\Rightarrow x=\frac{k\pi}{2}\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
LH
Xem chi tiết
LA
Xem chi tiết
KR
Xem chi tiết
LH
Xem chi tiết
DN
Xem chi tiết