Ôn tập học kỳ II

H24

Giải PT: \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)

NT
1 tháng 8 2018 lúc 8:21

đây là hóa học 8 à

Bình luận (0)
TL
1 tháng 8 2018 lúc 10:48

Dễ thấy, nếu x < 0:
VT=√x2+5+3x<√x2+12<√x2+12+5VT=x2+5+3x<x2+12<x2+12+5.
Phương trình vô nghiệm. Vậy x≥0x≥0.

Phương trình ban đầu tương đương:
(√x2+5−3)−(√x2+12−4)+3x−6=0(x2+5−3)−(x2+12−4)+3x−6=0

⇔x2−4√x2+5+3−x2−4√x2+12+4+3(x−2)=0⇔x2−4x2+5+3−x2−4x2+12+4+3(x−2)=0

⇔(x−2)[x+2√x2+5+3−x+2√x2+12+4+3]=0⇔(x−2)[x+2x2+5+3−x+2x2+12+4+3]=0

⇔⎡⎢⎣x=2x+2√x2+5+3−x+2√x2+12+4+3=0(2)⇔[x=2x+2x2+5+3−x+2x2+12+4+3=0(2)

Ta có:
(2)⇔(x+2)[1√x2+5+3−1√x2+12+4]+3=0(2)⇔(x+2)[1x2+5+3−1x2+12+4]+3=0

⇔(x+2).√x2+12−√x2+5+1(√x2+5+3)(√x2+12+4)=0⇔(x+2).x2+12−x2+5+1(x2+5+3)(x2+12+4)=0

Do x > 0 nên VT > 0 = VF. Do đó phương trình (2) vô nghiệm.

Vậy phương trình ban đầu có nghiệm duy nhất x = 2.

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
HH
Xem chi tiết
TT
Xem chi tiết
VT
Xem chi tiết
MH
Xem chi tiết
LH
Xem chi tiết