Giai phương trình:
\(x+1+\sqrt{2x+3}=\dfrac{8x^2+18x+11}{2\sqrt{2x+3}}\)
Cho pt: \(x^2+4x+3=\sqrt{8x+5}\left(x+1\right)+\sqrt{6x+2}\)có 1 trong các nghiệm có dạng \(a+\sqrt{b}\).Tính \(a^2+20b^2\)
Giai hệ phương trình\(\left\{{}\begin{matrix}3\sqrt{x+2y}=4-x-2y\\\sqrt[3]{2x+6}+\sqrt{2y}=2\end{matrix}\right.\)
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
giai hpt:
\(\left\{{}\begin{matrix}3x-y^2-2\sqrt{(x-2)(y+1)}=-5\\-2x+y^2+y=6\end{matrix}\right.\)
Giải phương trình: \(\sqrt{2x-2} + \sqrt[3]{x-2}=\dfrac{9-x}{\sqrt[3]{8x-16}}\)
Giải pt: \(\sqrt{x-1}+2x+2=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+1+y^2+xy=y\\x+y-2=\frac{y}{1+x^2}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x^4+8y^4-2x-y=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2+y^2=\frac{1}{5}\\4x^2+3x-\frac{57}{25}=-y\left(3x+1\right)\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{12-y}+\sqrt{y\left(12-x\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
Giải :
a) \(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x+3}}=\sqrt{3}\left(\dfrac{1}{\sqrt{4x}-3}+\dfrac{1}{\sqrt{5x}-6}\right)\)
b) \(x+\dfrac{4}{x+2}=3\)