Chương I - Căn bậc hai. Căn bậc ba

EN

Giải phương trình:

a)\(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{3}+x\)

b)\(\sqrt{x-3+2\sqrt{x-4}}=2\sqrt{x-4}+1\)

LH
10 tháng 7 2021 lúc 20:49

a)Pt\(\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=x+\sqrt{3}\)

\(\Leftrightarrow\left|x+\sqrt{3}\right|=x+\sqrt{3}\)

\(\Leftrightarrow x+\sqrt{3}\ge0\)\(\Leftrightarrow x\ge-\sqrt{3}\)

Vậy...

b)Đk:\(x\ge4\)

Pt\(\Leftrightarrow\sqrt{\left(x-4\right)+2\sqrt{x-4}+1}=2\sqrt{x-4}+1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+1\right)^2}=1+2\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x-4}+1=2\sqrt{x-4}+1\)

\(\Leftrightarrow\sqrt{x-4}=0\)

\(\Leftrightarrow x=4\) (tm)

Vậy...

Bình luận (0)
NT
10 tháng 7 2021 lúc 20:50

a) Ta có: \(\sqrt{x^2+2x\sqrt{3}+3}=x+\sqrt{3}\)

\(\Leftrightarrow\left|x+\sqrt{3}\right|=x+\sqrt{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=x+\sqrt{3}\left(x\ge-\sqrt{3}\right)\\x+\sqrt{3}=-x-\sqrt{3}\left(x< -\sqrt{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-\sqrt{3}\\x=-\sqrt{3}\left(loại\right)\end{matrix}\right.\Leftrightarrow x\ge-\sqrt{3}\)

 

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
LL
Xem chi tiết
LG
Xem chi tiết
LG
Xem chi tiết
NT
Xem chi tiết
LG
Xem chi tiết
AD
Xem chi tiết
HC
Xem chi tiết
NM
Xem chi tiết