Chương I - Căn bậc hai. Căn bậc ba

EN

Giải phương trình

a) \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

b)\(\sqrt{x^4++2x^2+1}=\sqrt{x^2+10x+25}-10x+22\)

NT
10 tháng 7 2021 lúc 20:57

a) Ta có: \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{x-1}+1+1\)(Vô lý)

Vậy: \(S=\varnothing\)

b) Ta có: \(\sqrt{x^4+2x^2+1}=\sqrt{x^2+10x+25}-10x+22\)

\(\Leftrightarrow x^2+1=\left|x+5\right|-10x+22\)

\(\Leftrightarrow\left|x+5\right|=x^2+1+10x-22=x^2+10x-21\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2+10x-21\left(x\ge-5\right)\\-x-5=x^2+10x-21\left(x< -5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+10x-21-x-5=0\\x^2+10x-21+x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+9x-26=0\\x^2+11x-16=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{185}}{2}\\x=\dfrac{-11-\sqrt{185}}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NY
Xem chi tiết
LL
Xem chi tiết
LG
Xem chi tiết
TT
Xem chi tiết
LG
Xem chi tiết
NS
Xem chi tiết
LL
Xem chi tiết
DL
Xem chi tiết
CA
Xem chi tiết