Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

QN

giải phương trình

\(x=\sqrt{3-x}\sqrt{4-x}+\sqrt{4-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{3-x}\)

NL
26 tháng 4 2019 lúc 22:57

ĐKXĐ: \(x\le3\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{3-x}\\b=\sqrt{4-x}\\c=\sqrt{5-x}\end{matrix}\right.\) \(a;b;c\ge0\) \(\Rightarrow\left\{{}\begin{matrix}x=3-a^2\\x=4-b^2\\x=5-c^2\end{matrix}\right.\) (1)

Từ pt ban đầu ta có: \(x=ab+ac+bc\)

Thế vào (1): \(\left\{{}\begin{matrix}ab+ac+bc=3-a^2\\ab+ac+bc=4-b^2\\ab+ac+bc=5-c^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^2+ab+ac+bc=3\\b^2+ab+ac+bc=4\\c^2+ab+ac+bc=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)\left(a+c\right)=3\\\left(a+b\right)\left(b+c\right)=4\\\left(a+c\right)\left(b+c\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a+b=X\\a+c=Y\\b+c=Z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}XY=3\\XZ=4\\YZ=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{Y}{Z}=\frac{3}{4}\\YZ=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=\frac{2\sqrt{15}}{5}\\a+c=\frac{\sqrt{15}}{2}\\b+c=\frac{2\sqrt{15}}{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=\frac{2\sqrt{15}}{5}\\a-b=\frac{-\sqrt{15}}{6}\end{matrix}\right.\) \(\Rightarrow a=\frac{7\sqrt{15}}{30}\) \(\Rightarrow x=3-a^2=\frac{131}{60}\) (t/m)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HN
Xem chi tiết
LK
Xem chi tiết
JB
Xem chi tiết
QD
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
NC
Xem chi tiết
VT
Xem chi tiết