Bài 1:
ĐK để $\sqrt{x^2-9}$ tồn tại là $x\geq 3$ hoặc $x\leq -3$
ĐK để $\sqrt{3-x}$ tồn tại là $x\leq 3$
$\Rightarrow $ ĐKXĐ: $x=3$ hoặc $x\leq -3$
PT $\Leftrightarrow \sqrt{(x-3)(x+3)}-\sqrt{3-x}=0$
$\Leftrightarrow \sqrt{3-x}(\sqrt{-x-3}-1)=0$
$\Rightarrow \sqrt{3-x}=0$ hoặc $\sqrt{-x-3}=1$
$\Rightarrow x=3$ hoặc $x=-4$ (thỏa mãn)
Bài 2:
ĐK: $x\geq 3; y\geq 4; z\geq 6$
Áp dụng BĐT AM-GM ta có:
$\sqrt{x-3}=\sqrt{1(x-3)}\leq \frac{1+(x-3)}{2}$
$\sqrt{y-4}=\sqrt{1(y-4)}\leq \frac{1+(y-4)}{2}$
$\sqrt{z-6}=\sqrt{1(z-6)}\leq \frac{1+(z-6)}{2}$
Cộng theo vế các BĐT trên thu được:
$\sqrt{x-3}+\sqrt{y-4}+\sqrt{z-6}\leq \frac{x+y+z}{2}-5$
Dấu "=" xảy ra khi $x-3=y-4=z-6=1$
$\Leftrightarrow x=4; y=5; z=7$
Vậy.........