\(\Leftrightarrow\sqrt{3}sinx+cosx=\sqrt{3}\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Pt \(\Leftrightarrow sinx+\dfrac{\sqrt{3}}{3}cosx=1\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sinx.cos\dfrac{\pi}{6}+cosx.sin\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{6}=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...