Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

NC

Giải phương trình :\(sinx=\dfrac{1}{3}\left(3-\sqrt{3}cosx\right)\)

NL
26 tháng 7 2021 lúc 17:36

\(\Leftrightarrow\sqrt{3}sinx+cosx=\sqrt{3}\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
LH
26 tháng 7 2021 lúc 17:37

Pt \(\Leftrightarrow sinx+\dfrac{\sqrt{3}}{3}cosx=1\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sinx.cos\dfrac{\pi}{6}+cosx.sin\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{6}=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết
HA
Xem chi tiết
NL
Xem chi tiết
TY
Xem chi tiết
AA
Xem chi tiết