Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

H24

Giải phương trình lượng giác sau:

a) 2sin2x.cos2x+\(\sqrt{3}\)cos4x=\(-\sqrt{2}\)

b) \(sin2x+sin^2x=\frac{1}{2}\)

c) \(cos^2x-\sqrt{3}sin2x=1+sin^2x\)

d) \(5sin2x-6cos^2x=13\)

e) \(2sin3x+sin2x=\sqrt{3}cos2x\)

NL
8 tháng 10 2020 lúc 20:50

a.

\(sin4x+\sqrt{3}cos4x=-\sqrt{2}\)

\(\Leftrightarrow\frac{1}{2}sin4x+\frac{\sqrt{3}}{2}cos4x=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(4x+\frac{\pi}{3}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{3}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

b.

\(2sin2x+2sin^2x=1\)

\(\Leftrightarrow2sin2x+1-cos2x=1\)

\(\Leftrightarrow2sin2x=cos2x\)

\(\Leftrightarrow tan2x=\frac{1}{2}\)

\(\Leftrightarrow2x=arctan\left(\frac{1}{2}\right)+k\pi\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
8 tháng 10 2020 lúc 20:52

c.

\(cos^2x-sin^2x-\sqrt{3}sin2x=1\)

\(\Leftrightarrow cos2x-\sqrt{3}sin2x=1\)

\(\Leftrightarrow\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow...\)

d.

\(5sin2x-3\left(1+cos2x\right)=13\)

\(\Leftrightarrow5sin2x-3cos2x=16\)

Do \(5^2+\left(-3\right)^2< 16^2\) nên pt vô nghiệm

e.

\(\Leftrightarrow sin3x=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(3x-\frac{\pi}{2}\right)=cos\left(2x-\frac{\pi}{6}\right)\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
JE
Xem chi tiết
NN
Xem chi tiết
JE
Xem chi tiết
TH
Xem chi tiết
QN
Xem chi tiết
JE
Xem chi tiết
QN
Xem chi tiết
QN
Xem chi tiết
TH
Xem chi tiết