Ta có: \(\frac{x+2}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
ĐKXĐ: \(x\ne\pm2\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x^2+2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\left(x+2\right)^2+\left(x-1\right)\left(x-2\right)=2\left(x^2+2\right)\)
\(\Leftrightarrow x^2+4x+4+x^2-2x-x+2=2x^2+4\)
\(\Leftrightarrow x^2+4x+4+x^2-2x-x+2-2x^2-4=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\left(ktmđk\right)\)
Vậy: \(x=\varnothing\)
\(\Rightarrow S=\left\{\varnothing\right\}\)
Giải
\(\frac{x+2}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\\ĐKXĐ:x\ne2;-2\\ MTC:\left(x-2\right)\left(x+2\right)\\ \frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\\ \left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x-2\right)=2\left(x^2+2\right)\\ x^2-4+x^2-3x+2=2x^2+4\\ x^2-4+x^2-3x+2-2x^2=4\\-3x=6\\ x=-2 \)