Giải phương trình:
1, \(3x^2+6x-3=\sqrt{\dfrac{x+7}{3}}\) (2 cách khác nhau )
2, \(\left(\sqrt{3x+1}-\sqrt{x-2}\right)\left(\sqrt{3x^2+7x+2}+4\right)=4x-2\)
3, \(\sqrt{-3x-1}+\sqrt{9x^2+9x+3}=-9x^2-6x\)
4, \(\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{5x^2-1}\)
5, \(\left(\sqrt{x+4}+2\right)\left(x+2\sqrt{x-5}+1\right)=6x\)
6, \(\sqrt{5-x^4}-\sqrt[3]{3x^2-2}=1\)
7, \(3x^2+11+\sqrt{x-2}+\sqrt{2x+3}=14x\)
8, \(\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-7}}}}=7\)
9, \(\sqrt{2x^2-1}+3x\sqrt{x^2-1}=3x^3+2x^2-9x-7\) ( với \(x>0\) )
Giải phương trình:
1, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
3, \(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
4, \(5\sqrt{x^4+8x}=4x^2+8\)
5, \(\left(x^2+4\right)\sqrt{2x+4}=3x^2+6x-4\)
6, \(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Giai phuong trinh
1/ \(\sqrt{x^2+4x+5}+\sqrt{x^2-6x+13}=3\)
2/ \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=6x-x^2-5\)
3/ \(\sqrt{2x^2-4x+27}+\sqrt{3x^2-6x+12}=4x^2+8x+4\)
4/ \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
5/ \(\left(x+2\right)\left(x+3\right)-\sqrt{x^2+5x+1}=9\)
6/ \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
7/ \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3\sqrt{x}\)
Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Giải phương trình vô tỉ:
a) \(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-2\)
c) \(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-4x\)
d) \(\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^2-16}-6\)
e) \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
g) \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
Giải phương trình vô tỉ:
a) \(4x^2-4x-10=\sqrt{8x^2-6x-10}\)
b) \(\sqrt{\left(x+1\right)\left(2-x\right)}=1+2x-2x^2\)
c) \(\sqrt{3x+8+6\sqrt{3x-1}}+\sqrt{3x+8-6\sqrt{3x-1}}=3x+4\)
d) \(2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
Bài 1: Giair các phương trình sau:
3, \(x^2-2-2\sqrt{4x-7}=0\)
4, \(4x^2-5x+1+2\sqrt{x-1}=0\)
BÀI 2: Giair các phương trình sau:
4, \(\sqrt{x-1}+\sqrt{5-x}=x^2-2x+5\)
5, \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Bài 3: Giair các phương trình sau:
2, \(x^2-x+2=2\sqrt{x^2-x+1}\)
Bài 4: Giair các phương trình sau:
2, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
4, \(\left(1+x\sqrt{x^2+1}\right)-\left(\sqrt{x^2+1}-x\right)=1\)
Bài 5: Giair các phương trình sau:
1, \(\sqrt{2x^2-4x+5}-x+4=0\)
2, \(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)
Bài 6: Cho x,y thỏa mãn \(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\). Tính giá trị biểu thức:
A = \(\left(4x-2\right)^{2017}+\left(4y-1\right)^{2018}\)
a)\(\sqrt{1-x}\left(x-3x^2\right)=x^3-3x^2+2x+6\)
b)\(x^2+x+12\sqrt{x+1}=36\)
c)\(3x-1+\frac{x-1}{4x}=\sqrt{3x+1}\)
d)\(\sqrt{x^2+12}-3x=\sqrt{x^2+5}-5\)
e)\(4x^2+12+\sqrt{x-1}=4\left(x\sqrt{5x-1}+\sqrt{9-5x}\right)\)
f)\(4x^3-25x^2+43x+x\sqrt{3x-2}=22+\sqrt{3x-2}\)
g)\(2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x^3+5x^2+4x+1\right)}=5x^3-3x^2+8\)
h)\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)
i)\(\sqrt{1-3x}-\sqrt[3]{3x-1}=\left|6x-2\right|\)
k)\(\sqrt{2x^3+3x^2-1}=2x^2+2x-x^3-1\)
l)\(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)
Giải phương trình bằng phương pháp bất đẳng thức
1, \(\sqrt{x^2-6x+11}+\sqrt{x^2-6x+13}+\sqrt[4]{x^2-4x+5}=3+\sqrt{2}\)
2, \(\sqrt{x-10}+\sqrt{30-x}=x^2-40x+400+2\sqrt{10}\)
3, \(x^2-3x+3,5=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
4, \(\sqrt{5x^3+3x^2+3x-2}=\dfrac{x^2}{2}+3x-\dfrac{1}{2}\)
5, \(2\sqrt{7x^3-11x^2+25x-12}=x^2+6x-1\)