Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

H24

Giải phương trình:

a) \(tan\left(\frac{\pi}{2}sin\pi\left(x+1\right)\right)=1\)

b) \(tan\left(\frac{\pi}{3}cot\pi x\right)=\frac{1}{\sqrt{3}}\)

c) \(sin\left(\pi tan3x\right)=\frac{1}{2}\)

NL
16 tháng 9 2020 lúc 13:25

a/

\(\Leftrightarrow\frac{\pi}{2}sin\pi\left(x+1\right)=\frac{\pi}{4}+k\pi\)

\(\Leftrightarrow sin\pi\left(x+1\right)=\frac{1}{2}+2k\)

Do \(-1\le sin\pi\left(x+1\right)\le1\Rightarrow k=0\)

\(\Rightarrow sin\pi\left(x+1\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}\pi\left(x+1\right)=\frac{\pi}{6}+k2\pi\\\pi\left(x+1\right)=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\frac{1}{6}+2k\\x+1=\frac{5}{6}+2k\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{6}+2k\\x=-\frac{1}{6}+2k\end{matrix}\right.\)

Bình luận (0)
NL
16 tháng 9 2020 lúc 13:28

b.

ĐKXĐ: ...

\(\Leftrightarrow\frac{\pi}{3}cot\pi x=\frac{\pi}{6}+k\pi\)

\(\Leftrightarrow cot\pi x=\frac{1}{2}+3k\)

\(\Leftrightarrow\pi x=arccot\left(\frac{1}{2}+3k\right)+n\pi\)

\(\Leftrightarrow x=\frac{1}{\pi}arccot\left(\frac{1}{2}+3k\right)+n\)

c.

\(\Leftrightarrow\left[{}\begin{matrix}\pi tan3x=\frac{\pi}{6}+k2\pi\\\pi tan3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tan3x=\frac{1}{6}+2k\\tan3x=\frac{5}{6}+2k\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}arctan\left(\frac{1}{6}+2k\right)+\frac{n2\pi}{3}\\x=\frac{1}{3}arctan\left(\frac{5}{6}+2k\right)+\frac{n2\pi}{3}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NL
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
BT
Xem chi tiết
NP
Xem chi tiết
PT
Xem chi tiết
QN
Xem chi tiết