Chương I - Căn bậc hai. Căn bậc ba

TH

giải phương trình: 4x+2x=3x=1

So sánh\(A=\sqrt{2018}-\sqrt{2017}và\sqrt{2019}-\sqrt{2018}\)

AH
11 tháng 11 2018 lúc 23:38

Lời giải:

Câu GPT: bạn xem lại đề bài.

Câu so sánh

Áp dụng hằng đẳng thức: \((a-b)(a+b)=a^2-b^2\Rightarrow a-b=\frac{a^2-b^2}{a+b}\) vào bài toán ta có:

\(\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)

\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)

Mà dễ thấy \(0< \sqrt{2018}+\sqrt{2017}< \sqrt{2019}+\sqrt{2018}\Rightarrow \frac{1}{\sqrt{2018}+\sqrt{2017}}> \frac{1}{\sqrt{2019}+\sqrt{2018}}\)

\(\Rightarrow \sqrt{2018}-\sqrt{2017}> \sqrt{2019}-\sqrt{2018}\)

Bình luận (3)
H24
18 tháng 6 2019 lúc 11:49

Akai Haruma cô ơi em có cách khác câu so sánh mặc dù có lẽ cách này không hay và ngắn gọn như của cô:) (câu gpt thì cách em hệt của cô rồi)

Xét hiệu hai vế: \(\sqrt{2018}-\sqrt{2017}-\sqrt{2019}+\sqrt{2018}\)

\(=2\sqrt{2018}-\left(\sqrt{2019}+\sqrt{2017}\right)\)

\(=2\sqrt{2018}-\frac{2}{\sqrt{2019}-\sqrt{2017}}\)

\(=2\left(\sqrt{2018}-\frac{1}{\sqrt{2019}-\sqrt{2017}}\right)\)

Ta có: \(\sqrt{2018}>1;\sqrt{2019}-\sqrt{2017}>0\Rightarrow\frac{1}{\sqrt{2019}-\sqrt{2017}}< 0\)

Từ đây suy ra \(2\left(\sqrt{2018}-\frac{1}{\sqrt{2019}-\sqrt{2017}}\right)>2\left(1-1\right)=0\)

Suy ra \(\sqrt{2018}-\sqrt{2017}>\sqrt{2019}-\sqrt{2018}\)

Bình luận (2)

Các câu hỏi tương tự
AD
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
NN
Xem chi tiết
DN
Xem chi tiết
PT
Xem chi tiết
LM
Xem chi tiết
DA
Xem chi tiết
LL
Xem chi tiết