Violympic toán 8

NU

Giải phương trình

(4x-5)^2(2x-3)(x-1)=9

KB
31 tháng 1 2019 lúc 17:17

\(\left(4x-5\right)^2\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow\left(16x^2-40x+25\right)\left(2x^2-3x-2x+3\right)=9\)

\(\Leftrightarrow\left(16x^2-40x+25\right)\left(2x^2-5x+3\right)=9\)

\(\Leftrightarrow\left(16x^2-40x+25\right).8\left(2x^2-5x+3\right)=72\)

\(\Leftrightarrow\left(16x^2-40x+25\right)\left(16x^2-40x+24\right)=72\)

\(\Leftrightarrow\left(16x^2-40x+\dfrac{49}{2}+\dfrac{1}{2}\right)\left(16x^2-40x+\dfrac{49}{2}-\dfrac{1}{2}\right)=72\)

\(\Leftrightarrow\left(16x^2-40x+\dfrac{49}{2}\right)^2-\dfrac{1}{4}=72\)

\(\Leftrightarrow\left(16x^2-40x+\dfrac{49}{2}\right)^2-\dfrac{289}{4}=0\)

\(\Leftrightarrow\left(16x^2-40x+\dfrac{49}{2}-\dfrac{17}{2}\right)\left(16x^2-40x+\dfrac{49}{2}+\dfrac{17}{2}\right)=0\)

\(\Leftrightarrow\left(16x^2-40x+16\right)\left(16x^2-40x+33\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}16x^2-40x+16=0\\16x^2-40x+33=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(4x-5\right)^2=9\\\left(4x-5\right)^2=-8\left(VL\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-5=3\\4x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy ...

Bình luận (0)
ND
31 tháng 1 2019 lúc 18:59

\(\left(4x-5\right)^2.\left(2x-3\right).\left(x-1\right)=9\)

\(\Leftrightarrow\left(4x-5\right)^2.\left(4x-6\right).\left(4x-4\right)=72\) (1)

Đặt 4x-5=t

=> phương trình (1) \(\Leftrightarrow\left(t-1\right)\left(t+1\right)t^2=72\)

\(\Leftrightarrow t^4-t^2=72\)

\(\Leftrightarrow t^4-t^2-72=0\)

\(\Leftrightarrow t^4-9t^2+8t^2-72=0\)

\(\Leftrightarrow t^2\left(t^2-9\right)+8\left(t^2-9\right)=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+3\right)\left(t^2+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+3=0\\t^2+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x-5-3=0\\4x-5+3=0\\t^2=-8\left(v\text{ô}l\text{ý}\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x=8\\4x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
BH
Xem chi tiết
TN
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
BB
Xem chi tiết
TT
Xem chi tiết
BB
Xem chi tiết