Violympic toán 9

TH

Giải phương trình:

3x + 7\(\sqrt{x-4}\) = 14\(\sqrt{x+4}\) - 20

TH
20 tháng 7 2018 lúc 9:18

Đk: x >/ 4

\(3x+7\sqrt{x-4}=14\sqrt{x+4}-20\)

\(\Leftrightarrow3x-15+15+7\sqrt{x-4}-7+7=14\sqrt{x+4}-42+42-20\)

\(\Leftrightarrow3\left(x-5\right)+15+7\cdot\dfrac{x-5}{\sqrt{x-4}+1}+7=14\cdot\dfrac{x-5}{\sqrt{x+4}+3}+42-20\)

\(\Leftrightarrow3\left(x-5\right)+7\cdot\dfrac{x-5}{\sqrt{x-4}+1}-14\cdot\dfrac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\left(x-5\right)\left(3+\dfrac{7}{\sqrt{x-4}+1}-\dfrac{14}{\sqrt{x+4}+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(N\right)\\3+\dfrac{7}{\sqrt{x-4}+1}-\dfrac{14}{\sqrt{x+4}+3}=0\left(1\right)\end{matrix}\right.\)

Xét pt (1), ta có: \(\dfrac{7}{\sqrt{x-4}+1}>0\)

\(\sqrt{x+4}>2\) (vì x > 4)

\(\Leftrightarrow\sqrt{x+4}+3>5\Leftrightarrow\dfrac{1}{\sqrt{x+4}+3}< \dfrac{1}{5}\Leftrightarrow\dfrac{14}{\sqrt{x+4}+3}< \dfrac{14}{5}\Leftrightarrow-\dfrac{14}{\sqrt{x+4}+3}>-\dfrac{14}{5}\Leftrightarrow3-\dfrac{14}{\sqrt{x+4}+3}>3-\dfrac{14}{5}=\dfrac{1}{5}\)

=> VT > 1/5

Vậy pt (1) vô nghiệm

Kl: x=5

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
TT
Xem chi tiết
NM
Xem chi tiết
VT
Xem chi tiết
TN
Xem chi tiết
LG
Xem chi tiết