Đặt \(u=2^x\left(u>0\right)\) thì phương trình trở thành \(u^2-\sqrt{u+6}=6\)
Tiếp tục đặt \(v=\sqrt{u+6}\left(v>6\right)\) thì \(v^2=u+6\) và ta có hệ phương trình đối xứng
\(\begin{cases}u^2=v+6\\v^2=u+6\end{cases}\)
Trừ vế với vế ta được :
\(u^2-v^2=-\left(u-v\right)\Leftrightarrow\left(u-v\right)\left(u+v+1\right)=0\)
\(\Leftrightarrow\begin{cases}u-v=0\\u+v+1=0\end{cases}\)
Với u=v ta được \(u^2=u+6\) \(\Leftrightarrow\begin{cases}u=-2\\u=3\end{cases}\) (u=-2 loại)
\(\Leftrightarrow2^x=3\Leftrightarrow x=\log_23\)
Với \(u+v+1=0\) ta được \(u^2+u-5=0\)
\(\Leftrightarrow\begin{cases}u=\frac{-1+\sqrt{21}}{2}\\u=\frac{-1-\sqrt{21}}{2}\end{cases}\)
Loại \(u=\frac{-1+\sqrt{21}}{2}\)
\(\Leftrightarrow2^x=\frac{-1-\sqrt{21}}{2}\Leftrightarrow x=\log_2\frac{-1-\sqrt{21}}{2}\)
Vậy phương trình có 2 nghiệm
\(x=\log_2\frac{-1-\sqrt{21}}{2};x=8\)
đặt t = 2^x ( t >=0 ) pt <=> t^2 - căn(t+6) = 6 <=> t^2 - 6 = căn(t+6) (DK : t^2-6 >=0 ) pt <=> (t^2-6)^2 = t+6 <=> t^4 - 12t^2 - t + 30 = 0 <=> ( t - 3 ) ( t^3 + 3t^2 - 3t -10 ) =0 (so với ĐK ) <=> t =3 , với t = 3 <=> 2^x = 3 <=> x = log 3 của 2 ( hay = 1,584962501 ) là nghiệm của pt . ( chúc bạn học tốt )