Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

BH

Giải phương trình :

\(2^{2x}-\sqrt{2^x+6}=6\)

DL
29 tháng 3 2016 lúc 21:05

Đặt \(u=2^x\left(u>0\right)\) thì phương trình trở thành \(u^2-\sqrt{u+6}=6\)

Tiếp tục đặt \(v=\sqrt{u+6}\left(v>6\right)\) thì \(v^2=u+6\) và ta có hệ phương trình đối xứng

\(\begin{cases}u^2=v+6\\v^2=u+6\end{cases}\)

Trừ vế với vế ta được :

\(u^2-v^2=-\left(u-v\right)\Leftrightarrow\left(u-v\right)\left(u+v+1\right)=0\)

\(\Leftrightarrow\begin{cases}u-v=0\\u+v+1=0\end{cases}\)

Với u=v ta được \(u^2=u+6\) \(\Leftrightarrow\begin{cases}u=-2\\u=3\end{cases}\) (u=-2 loại)

\(\Leftrightarrow2^x=3\Leftrightarrow x=\log_23\)

Với \(u+v+1=0\) ta được \(u^2+u-5=0\)

\(\Leftrightarrow\begin{cases}u=\frac{-1+\sqrt{21}}{2}\\u=\frac{-1-\sqrt{21}}{2}\end{cases}\) 

Loại \(u=\frac{-1+\sqrt{21}}{2}\)

\(\Leftrightarrow2^x=\frac{-1-\sqrt{21}}{2}\Leftrightarrow x=\log_2\frac{-1-\sqrt{21}}{2}\)

Vậy phương trình có 2 nghiệm

\(x=\log_2\frac{-1-\sqrt{21}}{2};x=8\)

 

Bình luận (0)
KN
30 tháng 3 2016 lúc 23:21

đặt t = 2^x ( t >=0 ) pt <=> t^2 - căn(t+6) = 6 <=> t^2 - 6 = căn(t+6)  (DK : t^2-6 >=0 ) pt <=> (t^2-6)^2 = t+6 <=> t^4 - 12t^2 - t + 30 = 0 <=> ( t - 3 ) ( t^3 + 3t^2 - 3t -10 ) =0 (so với ĐK ) <=> t =3 , với t = 3 <=> 2^x = 3 <=> x = log 3 của 2 ( hay = 1,584962501 ) là nghiệm của pt . ( chúc bạn học tốt )

Bình luận (0)
DT
19 tháng 4 2017 lúc 21:11

mình nghĩ là B

Bình luận (0)

Các câu hỏi tương tự
VM
Xem chi tiết
NA
Xem chi tiết
VT
Xem chi tiết
NH
Xem chi tiết
VT
Xem chi tiết
NH
Xem chi tiết
PP
Xem chi tiết
LP
Xem chi tiết
NQ
Xem chi tiết