Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

NT

giải hpt

x2y+xy2=0

2x2+3xy+2y2=1

AH
23 tháng 12 2019 lúc 10:44

Lời giải:

PT $(1)\Leftrightarrow xy(x+y)=0$

\(\Rightarrow \left[\begin{matrix} x=0\\ y=0\\ x=-y\end{matrix}\right.\)

Nếu $x=0$. Thay vào PT $(2)$ ta có:\(2y^2=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\)

Nếu $y=0$. Thay vào PT $(2)$ ta có: \(2x^2=1\Rightarrow x=\pm \sqrt{\frac{1}{2}}\)

Nếu $x=-y$. Thay vào PT $(2)$ ta có:

\(2(-y)^2+3(-y)y+2y^2=1\)

\(\Leftrightarrow y^2=1\Rightarrow y=\pm 1\Rightarrow x=\mp 1\)

Vậy $(x,y)=(1;-1); (-1;1); (0; \pm \sqrt{\frac{1}{2}}); (\pm \sqrt{\frac{1}{2}}; 0)$

Bình luận (0)
 Khách vãng lai đã xóa
AH
31 tháng 12 2019 lúc 17:19

Lời giải:

PT $(1)\Leftrightarrow xy(x+y)=0$

\(\Rightarrow \left[\begin{matrix} x=0\\ y=0\\ x=-y\end{matrix}\right.\)

Nếu $x=0$. Thay vào PT $(2)$ ta có:\(2y^2=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\)

Nếu $y=0$. Thay vào PT $(2)$ ta có: \(2x^2=1\Rightarrow x=\pm \sqrt{\frac{1}{2}}\)

Nếu $x=-y$. Thay vào PT $(2)$ ta có:

\(2(-y)^2+3(-y)y+2y^2=1\)

\(\Leftrightarrow y^2=1\Rightarrow y=\pm 1\Rightarrow x=\mp 1\)

Vậy $(x,y)=(1;-1); (-1;1); (0; \pm \sqrt{\frac{1}{2}}); (\pm \sqrt{\frac{1}{2}}; 0)$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
CW
Xem chi tiết
DT
Xem chi tiết
MN
Xem chi tiết
HP
Xem chi tiết
NA
Xem chi tiết