Violympic toán 9

TL

giải hpt sau

a) \(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)

b)\(\left\{{}\begin{matrix}x^2+y^2=52\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{12}\end{matrix}\right.\)

AL
23 tháng 2 2019 lúc 13:19

a)

\(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+xy=7\\\left(x+y\right)^2-xy=13\end{matrix}\right.\)

Đặt x+y = S, xy = P,ta có hệ

\(\left\{{}\begin{matrix}S+P=17\\S^2-P=13\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P=S-17\\S^2-S+4=0\end{matrix}\right.\)

\(S^2-S+4>0\)

=> Hệ phương trình vô nghiệm

Bình luận (0)

Các câu hỏi tương tự
EO
Xem chi tiết
TN
Xem chi tiết
MK
Xem chi tiết
BL
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
NN
Xem chi tiết
TK
Xem chi tiết