Violympic toán 9

PT

giải hpt:

\(\left\{{}\begin{matrix}x^2\left(y+1\right)\left(x+y+1\right)=3x^2-4x+1\\xy+x+1=x^2\end{matrix}\right.\)

HK
14 tháng 9 2018 lúc 16:42

\(\left\{{}\begin{matrix}\left(xy+x\right)\left(x^2+xy+x\right)=\left(x-1\right)\left(3x-1\right)\\xy+x=x^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-1\right)\left(2x^2-1\right)=\left(x-1\right)\left(3x-1\right)\\xy+x=x^2-1\end{matrix}\right.\)(1)

Nếu x=1 thì thay vào hệ dưới, tìm được y=-1

Nếu x\(\ne\)1 thì hệ (1) trở thành:\(\left\{{}\begin{matrix}\left(2x^2-1\right)\left(x+1\right)=3x-1\\xy+x=x^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x^3+2x^2-x-1=3x-1\\xy+x=x^2-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\left(x^2+x-2\right)=0\\xy+x=x^2-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\left(x-1\right)\left(x+2\right)=0\\xy+x=x^2-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\xy+x=x^2-1\end{matrix}\right.\)( vì x\(\ne\)1) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\xy+x=x^2-1\end{matrix}\right.\\\left[{}\begin{matrix}x=-2\\xy+x=x^2-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-\dfrac{5}{2}\end{matrix}\right.\)( vì với x=0 thì ko tìm đc y)

Vậy, hệ pt đã cho có các cặp nghiệm (x;y) là:(1;-1);(-2;\(-\dfrac{2}{5}\))

Bình luận (0)

Các câu hỏi tương tự
EO
Xem chi tiết
WY
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
BL
Xem chi tiết
PT
Xem chi tiết
TN
Xem chi tiết
BL
Xem chi tiết
LN
Xem chi tiết