Chương III - Hệ hai phương trình bậc nhất hai ẩn

NV

Giải HPT \(\left\{{}\begin{matrix}2x^2+y^2-4x+2y=1\\3x^2-2y^2-6x-4y=5\end{matrix}\right.\)

KS
24 tháng 7 2019 lúc 22:31

Nhân 2 pt đầu r cộng pt mới cho pt 2 xong giải

Bình luận (0)
H24
24 tháng 7 2019 lúc 22:31

\(\left\{{}\begin{matrix}2x^2+y^2-4x+2y=1\\3x^2-2y^2-6x-4y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4x^2+2y^2-8x+4y=2\left(1\right)\\3x^2-2y^2-6x-4y=5\left(2\right)\end{matrix}\right.\)

Lấy (1) cộng (2) ta được: \(7x^2-14x=7\Leftrightarrow x^2-2x=1\Leftrightarrow x^2-2x-1=0\Leftrightarrow\left\{{}\begin{matrix}x_1=1+\sqrt{2}\\x_2=1-\sqrt{2}\end{matrix}\right.\)

+) T/h 1: \(x=1+\sqrt{2}\) thay vào (1) ta có:

\(\left(1\right)\Leftrightarrow2\left(1+\sqrt{2}\right)^2+y^2-4\left(1+\sqrt{2}\right)+2y=1\\ \Leftrightarrow2\left(1+2\sqrt{2}+2\right)-4\left(1+\sqrt{2}\right)+y^2+2y-1=0\\ \Leftrightarrow2+4\sqrt{2}+4-4-4\sqrt{2}+y^2+2y-1=0\\ \Leftrightarrow y^2+2y+1=0\\ \Leftrightarrow\left(y+1\right)^2=0\Leftrightarrow y=-1\)

+) T/h 2 : \(x=1-\sqrt{2}\) thay vào (1) ta có:

\(\left(1\right)\Leftrightarrow2\left(1-\sqrt{2}\right)^2+y^2-4\left(1-\sqrt{2}\right)+2y=1\\ \Leftrightarrow2\left(1-2\sqrt{2}+2\right)-4\left(1-\sqrt{2}\right)+y^2+2y-1=0\\ \Leftrightarrow2-4\sqrt{2}+4-4+4\sqrt{2}+y^2+2y-1=0\\ \Leftrightarrow y^2+2y+1=0\\ \Leftrightarrow\left(y+1\right)^2=0\Leftrightarrow y=-1\)

Vậy hệ phương trình có nghiệm là: \(\left(x;y\right)=\left(1+\sqrt{2};-1\right);\left(1-\sqrt{2};-1\right)\)

Bình luận (1)

Các câu hỏi tương tự
NL
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
LN
Xem chi tiết
NL
Xem chi tiết
MT
Xem chi tiết
MH
Xem chi tiết
VQ
Xem chi tiết
NT
Xem chi tiết